Главная » Файлы » Библиотека » Науки, Образование |
[ Скачать с сервера (18.8 Kb) ] | 14.12.2009, 00:32 |
Химические элементы и опыты с ними Хлор Получим хлор Эрленмейеровскую колбу на 250 мл закроем пробкой с двумя отверстиями. В одно вставим капельную воронку, в другое - согнутую под прямым углом газоотводную трубку. На дне колбы положим Несколько кристалликов перманганата калия, г капельную воронку до середины заполним концентрированной соляной кислотой. Когда соляная кислота будет капать на перманганат калия, образуется желто-зеленый газ, он постепенна наполнит колбу и затем начнет проходить через трубку. Перманганат калия КМnO4 (калиевая соль марганцевой кислоты НМnO4) является сильным окислителем. Он окисляет до воды содержащийся в соляной кислоте водород и освобождает хлор: 2 КМnO4 + 16НСl = 2КС1 + 2MnCl2 + 8Н2О + 5Cl2 В качестве окислителей можно применить также оксид марганца (IV) МnО2 (пиролюзит) или бихромат калия K2Cr2O7. Хлор - сильный яд. Он раздражает слизистые оболочки,, поражает дыхательные пути и при длительном вдыхании приводит к смерти в результате разрушения легких. Поэтому опыты с хлором нужно проводить обязательно в вытяжном шкафу или на открытом воздухе. Избыток хлора можно связать, пропуская его через концентрированные растворы щелочей, с которыми он реагирует пс следующему уравнению: 2NaOH + Cl2 = NaClO + NaCl + H2O Для связывания остатка хлора применяется также раствор тиосульфата (гипосульфита) натрия Na2S2O3. Простые опыты с хлором Заполним хлором несколько больших пробирок, для этого подведем в них сверху газ, используя опущенную на дно сосуда трубку. Хлор в 2,5 раза тяжелее воздуха, поэтому он полностью вытеснит последний из пробирки. В первую пробирку поместим зеленые листочки и цветы разной окраски, в другую - несколько полосок голубой и красной лакмусовой бумаги, несколько цветных лоскутков материи, а также влажный лист бумаги, на котором сделаны надписи простым карандашом, чернилами и разноцветными химическими карандашами. Закроем пробирки корковыми пробками и оставим на некоторое время. Части растений, лакмусовая бумага, следы карандаша (кроме простого), а также некоторые окрашенные лоскутки ткани обесцветятся. Дело в том, что при взаимодействии хлора с водой в испытываемых объектах происходит реакция: H2O + Cl2 = HСlO + HCl Хлорноватистая кислота НСЮ, которая образуется наряду с соляной кислотой, полностью разлагается с выделением чрезвычайно реакционноспособного атомарного кислорода: HСlO = HC1 + O Ему в конечном счете и следует приписать отбеливающий эффект. Отбеливающие средства на основе хлора часто применяются в текстильной промышленности, а дезинфицирующие - для обеззараживания воды. Хлор может отбелить также жиры и масла. Насыплем в заполненную хлором пробирку порошок железа (0,25-0,5 г), который предварительно нагреем на железном шпателе или на полоске жести. Железный порошок взаимодействует с хлором с появлением пламени. В результате образуется хлорид железа (III): 2Fe + 2Cl2 = 2FеСl3 Если опыт не удался, значит, хлор был влажный. Для того чтобы его высушить, пропустим через промывную склянку с концентрированной серной кислотой. Другие металлы (цинк, медь, олово и т. д.) тоже взаимодействуют с хлором, образуя соответствующие хлориды. Эти реакции дали повод назвать хлор и родственные ему элементы- фтор, бром и иод - галогенами, что в переводе означает "рождающий соль" Синтез хлористого водорода Для синтеза нам нужны два аппарата для получения газов. В одном будем получать водород из разбавленной серной кислоты и цинка) а в другом - хлор из соляной кислоты и перманганата калия. Пропустив оба газа через концентрированную серную кислоту, высушим их и затем, сжигая водород в атмосфере хлора, получим хлористый водород. Закроем ламповое стекло или широкий стеклянный цилиндр. Двумя пробками с двумя отверстиями в каждой (см. рисунок). В одно из отверстий в нижней пробке вставим согнутую под прямым углом трубку для подвода хлора, второе - диаметром ве менее 10 мм-закроем пробкой. В отверстия в верхней пробке вставим кусок стеклянной трубки, на которую надет шланг с зажимом, и согнутую под прямым углом трубку, которую отведем в сосуд с водой. Оттуда полученный газ будет поступать в сосуд с раствором тиосульфата натрия. Прежде всего заполним цилиндр хлором (второе нижнее отверстие плотно закрыто!). В это время получим в аппарате Киппа водород. Еще раз напоминаем: его необходимо высушить, `пропустив через концентрированную серную кислоту. Укрепим на промывной склянке кусок шланга длиной не менее 20 см и вставим в конец шланга стеклянную трубку с оттянутым носиком, на которую надета пробка, точно соответствующая диаметру широкого отверстия. Если проба на гремучий газ дала отрицательный результат, то подожжем водород, выходящий из оттянутого конца стеклянной трубки. Тем временем цилиндр наполнится хлором. Удалим маленькую пробку и быстро (чтобы не зажечь резину) вставим трубку с пламенем водорода на конце. Обратим внимание на то, чтобы оба газа поступали в цилиндр с одинаковой скоростью. Водород сгорает в атмосфере хлора с появлением бледного пламени. В результате образуется хлористый водород, который мы можем обнаружить, если откроем верхний зажим и подержим перед отверстием шланга стеклянную палочку, смоченную гидроксидом аммония - образуется туман нашатыря. Если пламя начинает угасать, необходимо немедленно перекрыть подачу водорода, так как в цилиндре образуется чрезвычайно взрывоопасный хлористоводородный гремучий газ. (Цилиндр хорошо проветрить!) Это опасный опыт, и его можно проводить только под руководством специалиста. Газообразный хлористый водород растворяется в первой промывной склянке (абсорбере), в результате получается соляная кислота. Проверим наличие кислой среды с помощью лакмуса, а хлорид-ионы обнаружим, добавив нитрат серебра. По окончании реакции сначала надо прекратить подачу водорода, а затем отсоединить цилиндр от абсорбера. Если этого не сделать, то вода потечет из абсорбера в цилиндр, Так как хлористый водород чрезвычайно хорошо растворяется в воде (1 объемная часть воды растворяет при комнатной температуре около 450 объемных частей хлористого водорода). Хлористый водород мы можем получить также при взаимодействии хлорида натрия и концентрированной серной кислоты NaCl + H2SО4 = NaНSО4 + НС1 а затем провести с ним опыт с образованием фонтана (см. опыт "Аммиачный фонтан") Когда мы разберем аппаратуру, все резиновые части следует промыть разбавленным раствором едкого натра или водой. Хлор сильно разрушает резину, она становится твердой и хрупкой. Хлористый водород - бесцветный газ с резким запахом, он тяжелее воздуха и во влажном воздухе образует белый туман. В промышленности хлористый водород получают почти исключительно синтезом из элементов. В кварцевой горелке, которая состоит из центральной трубы и внешней рубашки, водород пропускают через рубашку, а хлор - по внутренней трубе. Оба газа вступают во взаимодействие только в пламени. Таким образом удается избежать взрыва хлористоводородного гремучего газа. Горячий газообразный хлористый водород охлаждают и, растворяя в воде, получают соляную кислоту. Концентрированной считают 39%-ную соляную кислоту, а разбавленной - 10%-ную. Сырая (техническая) соляная кислота чаще всего желтоватая из-за примеси FеС13, чистая кислота представляет собой бесцветную жидкость. Кислород Получение кислорода простыми способами Укрепим пробирку из тугоплавкого стекла на штативе и внесем в нее 5 г порошкообразной селитры (нитрата калия KNO3 или нитрата натрия NaNO3). Поставим под пробирку чашку из огнеупорного материала, наполненную песком, так как при этом опыте стекло часто плавится и вытекает горячая масса. Поэтому и горелку при нагревании будем держать сбоку. Когда мы сильно нагреем селитру, она расплавится и из нее выделится кислород (обнаружим это с помощью тлеющей лучины - она воспламенится в пробирке). При этом нитрат калия перейдет в нитрит KNO3. Бросим затем тигельными щипцами или пинцетом кусок черенковой серы в расплав (никогда не держать лицо над пробиркой). Сера воспламенится я сгорит с выделением большого количества тепла. Опыт следует проводить при открытых окнах (из-за получающихся окислов серы). Полученный нитрит натрия сохраним для последующих опытов. Процесс протекает следующим образом: 2KNO3 = 2KNO2 + O2 Можно получить кислород и другими методами. Перманганат калия КМnO4 (калийная соль марганцевой кислоты) отдает при нагревании кислород и превращается при этом в оксид марганца (IV) : 2КМnO4 = MnO2 + К2MnO4 + O2 Из 10 г перманганата калия можно получить примерно литр кислорода, значит двух граммов достаточно, чтобы наполнить кислородом пять пробирок нормальной величины. Перманганат калия можно приобрести в любой аптеке, если он отсутствует в домашней аптечке. Некоторое количество перманганата калия нагреем в тугоплавкой пробирке и уловим в пробирки выделяющийся кислород с помощью пневматической ванны. Кристаллы, растрескиваясь, разрушаются, и, зачастую, некоторое количество пылеобразного перманганата увлекается вместе стазом. Вода в пневматической ванне и отводной трубке в этом случае окрасится в красный цвет. После окончания опыта очистим ванну и трубку раствором тиосульфата (гипосульфита) натрия -фотофиксажа, который немного подкислим разбавленной соляной кислотой. В больших количествах кислород можно также получить из пероксида (перекиси) водорода H2O2. Купим в аптеке трехпроцентный раствор-дезинфицирующее средство или препарат для обработки ран. Пероксид водорода мало устойчив. Уже при стоянии на воздухе он разлагается на кислород и воду: 2H2O2 = 2H2O + O2 Разложение можно существенно ускорить, если добавить к пероксиду немного перманганата калия, диоксида марганца MnO2 (пиролюзита), активного угля, металлического порошка, крови (свернувшейся или свежей), слюны, эти вещества действуют как катализаторы. Мы можем в этом убедиться, если в маленькую пробирку поместим примерно 1 мл пероксида водорода с одним из названных веществ, а наличие выделяющегося кислорода установим с помощью пробы лучинкой. Если в химическом стакане к 5мл трехпроцентного раствора пероксида водорода добавить равное количество крови животного, то смесь сильно вспенится, пена застынет и вздуется в результате выделения пузырьков кислорода. Затем испытаем каталитическое действие 10%-ного раствора сульфата меди (II) с добавкой гидроксида калия (едкого кали) и без нее, раствора сульфата железа (II), раствора хлорида железа (III) (с добавкой железного порошка и без него), карбоната натрия, хлорида натрия и органических веществ (молока, сахара, размельченных листьев зеленых растений и т. д.). Теперь мы на опыте убедились, что различные вещества каталитически ускоряют разложение пероксида водорода. Катализаторы повышают скорость реакции химического процесса и при этом сами не расходуются. В конечном итоге они снижают энергию активации, необходимую для возбуждения реакции. Но существуют и вещества, действующие противоположным образом. Их называют отрицательными катализаторами, антикатализаторами, стабилизаторами или ингибиторами. Например, фосфорная кислота препятствует разложению пероксида водорода. Поэтому продажный раствор пероксида водорода обычно стабилизирован фосфорной или мочевой кислотой. Сожжем железо Применим собранный кислород для опытов по окислению. Внесем в наполненные кислородом пробирки небольшие, по возможности тонкоизмельченные, пробы свинца, меди, алюминия, цинка и олова и неплотно закроем пробирки ватой. При нагревании металлы сгорят с появлением яркого пламени; в пробирках останутся оксиды. В чистом кислороде сгорит также тонкая железная проволока. Придадим ей спиралеобразную форму и укрепим на одном из концов пропитанного парафином куска дерева, который подожжем. Проволоку как можно скорее внесем в широкий химический стакан, наполненный кислородом. Чтобы стакан не дал трещину из-за падающих горячих частиц, необходимо, погрузить дно стакана в слой песка или воды. Проволока сгорит с появлением ярких разлетающихся искр, в результате образуется оксид железа (II, III), так называемая окалина: 3Fe+2О2 = Fe3О4 Кислород - газ без цвета, запаха и вкуса, частично растворимый в воде; 1 литр кислорода при О °С и 760 мм рт. ст. весит 1,429 г. Следовательно, кислород тяжелее воздуха (1 л воздуха при тех же условиях весит 1,293 г). Почти со всеми металлами и неметаллами кислород образует оксиды. Атомарный кислород В природе кислород встречается в виде двухатомных молекул. Атомарный кислород О обладает чрезвычайно сильной окислительной способностью. Он получается при разложении озона, молекула которого содержит три атома кислорода: О3 = О2 + О Если на налитую в фарфоровую чашку концентрированную серную кислоту насыпать немного тонкораспыленного перманганата калия, образуется озон. (Надеть защитные очки! Взрывоопасно!) Будем держать над чашкой: а) кусок крахмальной бумаги, смоченной иодидом калия, б) полоску лакмусовой бумажки. Из иодида калия выделится иод, который окрасит крахмальную бумагу в синий цвет (иодокрахмальная реакция); лакмусовая бумажка обесцветится. Наконец, погрузим на стеклянной палочке в смесь серной кислоты и перманганата немного ваты, пропитанной спиртом или скипидаром. Вата со взрывом сгорит. Натрий Получение гидроксида натрия электролизом Ртутный способ С самого начала надо привыкать работать с малыми количествами веществ (это экономит химикаты и время и приучает к точности). Поэтому выберем несколько небольших сосудов, применяемых, например, для полумикроанализа. Возьмем маленькие фарфоровые тигли (высотой 1,5 см). В один из них нальем немного ртути. Затем поставим его в химический стакан на 50 мл, который на 3/4 наполним концентрированным раствором поваренной соли. Стакан поставим в плоскую чашку или кювету. Теперь нужны два электрода. Анод должен быть графитовый, так как на нем выделяется химически активный хлор. Воспользуемся угольным стержнем от батарейки для карманного фонарика или сделаем графитовый стержень. Катодом может служить вязальная спица, которую надо заплавить в стеклянную трубку так, чтобы с одной стороны торчал кончик длиной 1,5- 2 мм (см.рисунок). Этим концом погрузим катод в ртуть (стеклянная трубка также должна смачиваться ртутью). Теперь можно включить цепь постоянного тока. Удобнее всего работать с напряжением 12В (аккумулятор), поддерживая в течение 3-5 мин ток 1 А. Работайте без страха, ведь так же протекает процесс в батарее карманного фонарика! Конечно, в цепь желательно ввести переменное сопротивление и амперметр. Мы заметим, что на угольном стержне образуются мелкие пузырьки газа, в котором легко узнать хлор - и по запаху, и с помощью влажной крахмальной бумажки, смоченной иодидом калия (посинение). На катоде, если ртуть чистая, ничего не наблюдается. Через некоторое время прекратим подачу тока и пинцетом или тигельными шипцами вытащим тигель из стакана. Осторожно сольем раствор поваренной соли, находящийся в тигле над ртутью. Оставшиеся капли высушим полоской фильтровальной бумаги. Затем наполним тигель до середины дистиллированной водой, которую также быстро сольем и вновь высушим ртуть. Таким образом, мы удалим оставшиесяна ртути следы поваренной соли. Выльем ртуть в маленькую пробирку (через воронку!) и нальем в нее примерно 3 мл дистиллированной воды. Через некоторое время на поверхности ртути начнут выделяться пузырьки газа. Как уже упоминалось, мы имеем дело не с чистой ртутью, а с амальгамой натрия, которая при соприкосновении с водой образует гидроксид натрия, в то время как водород улетучивается. Отберем пипеткой пробу жидкости и подействуем на нее одним из индикаторов - лакмусом, фенолфталеином или метиловым оранжевым. Красная лакмусовая бумажка в основной среде посинеет, бесцветный спиртовой раствор фенолфталеина сильно покраснеет, а раствор метилового оранжевого приобретет желтую окраску. Для получения кислой среды (проверим с помощью лакмуса) добавим к другой пробе того же раствора разбавленную азотную кислоту и затем несколько капель раствора нитрата серебра. Если осадок не выпадет, то это означает, что полученный едкий натр не загрязнен хлором. В противном случае образуется белый осадок хлорида серебра: Ag+ + Cl- " AgClЇ (нерастворим). В уравнении непременно нужно ставить двойную стрелку, так как все реакции осаждения равновесные. В данном случае равновесие почти полностью смещено в сторону AgCl. Хлорид серебра растворяется при добавлении нескольких капель концентрированного водного раствора аммиака, в результате образуется диамминохлорид серебра (I): AgCl + 2NH4OH = [Ag(NH3)2]Cl растворим После окончания опыта все сосуды хорошо вымоем. Еще раз промоем водой ртуть и поместим ее в хорошо закрывающуюся склянку. Диафрагменыый способ Другая часть едкого натра получается в промышленности по диафрагменному способу. Пористая перегородка - диафрагма - должна полностью исключить перемешивание жидкости катодного и анодного пространства, но не мешать передвижению ионов. В промышленности в качестве диафрагм применяют асбестовый картон, асбестовую бумагу или пропитанную сульфатом бария асбестовую вату. Иногда диафрагму получают также из портланд-цемента и раствора поваренной соли. Если после затвердевания цемента провести выщелачивание, то кристаллы соли растворятся, и, таким образом, возникнут мелкие поры. Для нашего опыта с успехом может быть применена отбитая с одного конца "яичная скорлупа. Промоем ее вначале разбавленной соляной кислотой, а затем - многократно водой. Подвесим скорлупу в держателе из толстой изолированной проволоки на стенку не слишком маленького химического стакана ,и заполним скорлупу и стакан концентрированным раствором поваренной соли. В яйцо погрузим анод- , угольный стержень, а в качестве катода используем железную проволоку, свернутую спиралью. Примерно через пять минут после начала электролиза, проводимого при напряжении 6-12 В и токе 0,5-1 А, отберем первую пробу и проверим основность среды, как мы .это делали в предыдущем опыте. Еще через пять минут прекратим опыт. Из катодного пространства возьмем примерно 20 мл полученной щелочи, а к остатку добавим каплю раствора фенолфталеина. Интенсивная красная окраска - показатель успешного опыта. Если капнуть фенолфталеин в скорлупу, цвет не изменится, зато растворы иодида калия и крахмала окрасятся в голубой цвет. В технике 10-15%-ный раствор едкого натра выпаривают в вакуумных аппаратах. При упаривании выпадает твердый хлорид натрия, который отделяют фильтрованием. Сера Растворяем серу Сера, которая, как известно, не растворяется в воде и в незначительных количествах растворяется в бензоле, спирте или эфире, прекрасно растворяется в сероуглероде CS2. Если медленно испарять на часовом стекле раствор небольшого количества серы в сероуглероде, то получим крупные кристаллы так называемой ромбической или а-серы. Но не будем забывать об огнеопасности и ядовитости сероуглерода, поэтому потушим все горелки и поставим часовое стекло под тягу или перед окном. Другая форма - моноклинная или b-cepa получится, если терпеливо выкристаллизовывать из толуола иглы длиной около 1 см (толуол также огнеопасен!). Получение сероводорода и опыты с ним Поместим в пробирку немного (с горошину) полученного сульфида железа и добавим разбавленной соляной кислоты. Вещества взаимодействуют с бурным выделением газа: FeS + 2HCl = H2S + FeCl2 Из пробирки доносится неприятный запах тухлых яиц - это улетучивается сероводород. Если его пропустить через воду, то он частично растворится. Образуется слабая кислота, раствор которой часто называют сероводородной водой. При работе с сероводородом надо соблюдать чрезвычайную осторожность, так как газ почти так же ядовит, как синильная кислота HCN. Он вызывает паралич дыхательных путей и смерть, если концентрация сероводорода в воздухе составляет 1,2-2,8 мг/л. Химически сероводород обнаруживают с помощью влажной свинцовой реактивной бумаги. Чтобы получить ее, смочим фильтровальную бумагу разбавленным раствором ацетата или нитрата свинца, высушим ее и разрежем на полоски шириной 1 см. Сероводород взаимодействует с ионами свинца, в результате образуется черный сульфид свинца. Таким способ можно обнаружить сероводород в испорченных продуктах питания (яйцах, мясе). Мы рекомендуем получать сероводород сухим методом, так как в этом случае поток газа можно легко регулировать и перекрыть в нужное время. Для этой цели расплавим в фарфоровой чашке около 25 г парафина и смешаем с расплавом 15 г серы. Затем уберем горелку и будем перемешивать массу до застывания. Твердую массу размельчим и сохраним для дальнейших опытов. Когда надо получить сероводород, несколько кусочков смеси парафина и серы нагреем в пробирке до температуры выше 170°С. При повышении температуры выход газа усиливается, а если убрать горелку - прекращается. В процессе реакции водород парафина взаимодействует с серой, в результате чего образуется сероводород, а в пробирке остается углерод, например: C40H82 + 41S = 41H2S + 40C Получаем сульфиды Чтобы рассмотреть окраску выпадающих в осадок сульфидов металлов, пропустим сероводород через растворы различных солей металлов. Сульфиды марганца, цинка, кобальта, никеля и железа выпадут, еcли в растворе создать щелочную среду (например, добавив гидроксид аммония). В солянокислом растворе выпадут сульфиды свинца, меди, висмута, кадмия, сурьмы и олова. Горение сероводорода Сделав предварительно пробу на гремучий газ, подожжем сероводород, выходящий из оттянутой на конце стеклянной трубки. Сероводород горит с появлением бледного пламени с голубым ореолом: ЗН2S + ЗО2 = 2H2O + 2SO2 В результате сгорания возникает оксид серы (IV) или серрнистый газ. Его легко определить по резкому запаху и по покраснению влажной голубой лакмусовой бумажки. При недостаточном доступе кислорода сероводород окисляется только до серы. Активный уголь каталитически ускоряет этот процесс. Этим способом часто пользуются при тонкой очистке промышленных газов, содержание серы в которых не должно превышать 25 г/м3: 2H2S + О2 = 2Н2О + 2S Нетрудно воспроизвести этот процесс. Схема установки изображена на рисунке. Главное заключается в том, что пропустить через активный уголь воздух и сероводород в отношении 1 : 3. На угле выделится желтая сера. Активный уголь можно очистить от серы, промыв его в сероуглероде. В технике для этой цели применяют чаще всего раствор сульфида аммония (NH4)2S. Эксперименты с сернистой кислотой Оксид серы (IV) - сернистый газ - чрезвычайно хорошо растворяется в воде, в результате этого образуется сернистая кислота: H2O + SO2 = H2SO3 Она убивает микробы и обладает отбеливающим действие;. На пивоваренных и винодельческих заводах серой окуривав бочки. Сернистым газом отбеливают также корзины из ивовых прутьев, влажную шерсть, солому, хлопок и шелк. Пятна От черники, например, выводятся, если долгое время держать увлажненное загрязненное место в "парах" горящей серы. Проверим отбеливающее действие сернистой кислоты. Для этого цилиндр, где некоторое время горели кусочки серы, опустим различные окрашенные предметы (цветы, влажные кусочки ткани, важную лакмусовую бумагу и т. д.), хорошо закроем цилиндр стеклянной пластинкой и некоторое время подождем. Тот, кто когда-нибудь изучал атомное строение элементов, знает, что в атоме серы на внешней орбите имеется шесть так называемых валентных электронов. Поэтому сера максимально может быть в соединениях шестивалентной. Этой степени окисления соответствует оксид серы (VI) с формулой SO3. Он является ангидридом серной кислоты: H2O + SO3 = H2SO4 При сгорании серы в обычных условиях всегда получается оксид серы (IV). А если и образуется некоторое количество оксида серы (VI), то чаще всего он тотчас же разлагается под действием тепла на оксид серы (IV) и кислород: 2SO3 = 2SO2 + O2 При производстве серной кислоты главной проблемой является превращение SО2 в SO3. Для этой цели сейчас используются два способа: камерный (или улучшенный - башенный) и контактный. (см. опыт "Получение серной кислоты) Получение серной кислоты Камерный способ Заполним оксидом серы (IV) SO2 большой сосуд (круглодонную колбу на 500 мл), поместив в него на некоторое время горящие кусочки серы или подведя газ из аппарата, где он образуется. Оксид серы (IV) можно также относительно легко получить, капая концентрированную серную кислоту в концентрированный раствор сульфита натрия Na2SO3. При этом серная кислота, как более сильная, вытеснит слабую кислоту из ее солей. Когда колба заполнится газом, закроем ее пробкой с тремя отверстиями. В одно, как показано на рисунке, вставим согнутую под прямым углом стеклянную трубку, соединенную с боковым отводом пробирки, в которой при взаимодействии кусочков меди и азотной кислоты образуется оксид азота (IV): 4HNO3 + Сu = Cu(NO3)2 + 2H2O + 2NO2 Концентрация кислоты должна составлять около 60% (масс.). Внимание! NO2 - сильный яд! В другое отверстие введем соединенную с пробиркой стеклянную трубку, через которую позже пойдет водяной пар. В третье отверстие вставим короткий кусок трубки с бунзеновским клапаном - коротким куском резинового шланга с прорезью. Сначала создадим сильный приток- в колбу окси азота. (Осторожно! Яд!) Но реакция пока не идет. В колбе находится смесь коричневого NO2 и бесцветного SO2. К только мы пропустим водяной пар, изменение окраски укажет на то, что реакция началась. Под действием водяного пара оксид азота (IV) окисляет оксид серы (IV) до оксида серы (VI), который Тотчас же, взаимодействуя с водяным паром, превращаясь в серную кислоту: 2NO2 + 2SO2 = 2NO + SO3 2NO + O2 = 2NO2 На дне колбы соберется бесцветный конденсат, а излишек газа и паров уйдет через бунзеновский клапан. Выльем бесцветную жидкость из колбы в пробирку, проверим кислую реакцию лакмусовой бумажкой и обнаружим сульфат-ион SO42- полученной серной кислоты, добавив раствор хлорид бария. Толстый белый осадок сульфата бария укажет нам успешное проведение опыта. По этому принципу, но в гораздо большем масштабе, получают серную кислоту в технике. Раньше реакционные камер были футерованы свинцом, так как он устойчив при воздействии паров серной кислоты. В современных башенных установках применяют реакторы на керамической основе. Но большее количество серной кислоты производят сейчас по контактному способу. Контактный способ При производстве серной кислоты применяют различное сыры Чистая сера стала применяться в только в 60-х годах. В большинстве случаев на предприятиях получают оксид серы (IV) обжигом сульфидных руд. Во вращающейся трубчатой печи или в многоярусной печи пирит взаимодействует с кислородом воздуха по следующему уравнению: 4FeS2 + 11О2 = ЗFe2O3 + 8SO2 Образующийся оксид железа (III) удаляется из печи в виде окалины и перерабатывается далее на предприятиях по получению чугуна. Растолчем в ступке несколько кусочков пирита и поместим их в трубку из тугоплавкого стекла, которую закроем пробкой с отверстием. Затем горелкой сильно нагреем трубку, одновременно пропуская через нее воздух с помощью резиновой груши. Для того чтобы осела летучая пыль из обжигового газа, отведем его в пустой стеклянный сосуд, а из него - во вторую тугоплавкую трубку, в которой находится катализатор, нагретый до 400-500 °С. В технике чаще всего в качестве катализатора используют оксид ванадия (V) V2O5 или ванадат натрия NaVO3, а мы для этой цели применим красный оксид железа (III) Fe2О3. Нанесем мелкоизмельченный оксид железа на стеклянную вату, которую распределим в трубке слоем Длиной 5 см. Трубку с катализатором нагреем до начала красного каления. На катализаторе оксид серы (IV) взаимодействует с кислородом воздуха; в результате образуется оксид серы (VI) 2SO2 + O2 = 2SO3 который мы различим по его способности образовывать туман во влажном воздухе. Соберем SO2 в пустой колбе и, сильно отряхивая, смешаем с небольшим количеством воды. Получим серную кислоту - ее наличие докажем, как и в предыдущем способе. Можно также поместить разделенные стеклянной ватой и катализатор в одну из стеклянных трубок. Можно работать и в пробирке с боковым отводом. Положим на пробирки пирит, на него слой стеклянной ваты, а затем стеклянную вату с катализатором. Воздух введем сверху в трубку, которая должна подходить вплотную к катализатору. На боковом отводе укрепим согнутую под углом трубку, которая ведет в пробирку. Если нет пирита, то в пробирке с боковым отводом получим оксид серы (IV) из сульфита или гидросульфита натри серной кислоты, и затем пропустим над катализатором полученный газ вместе с потоком воздуха или кислорода. В качестве катализатора можно применить также оксид хрома (Ш) который следует прокалить в железном тигле и тонко растолочь в ступке. Для этой же цели можно пропитать раствором су фата железа (II) глиняный черепок и затем сильно прокалить его. На глине при этом образуется тонкий порошок оке железа (III). Кислота из гипса Если сульфидов металлов мало (как, например, в Германии) исходными продуктами для получения серной кислоты может служить ангидрит CaSO4 и гипс CaSO4-H2O. Метод получения оксида серы (IV) из этих продуктов был разработан Мюллером и Кюне еще 60 лет, назад. Способы получения серной кислоты из ангидрита будут иметь значение и в будущем, так как серная кислота является самым распространенным химическим продуктом. Сульфаты можно разложить, применяя высокую (до 2000 °С ) температуру. Мюллер установил, что температуру разложения сульфата кальция можно снизить до 1200 °С, если добавить тонкоизмельченный кокс. Сначала, при 900 °С, кокс восстанавливает сульфат кальция до сульфида, а тот в свою очередь при температуре 1200 °С взаимодействует с неразложившимся сульфатом; при этом образуется оксид серы (IV) и негашенная известь: CaSO4 + 2C = CaS + 2CO2 CaS + 3CaSO4 = 4CaO + 4SO2 Разложить сульфат кальция в лабораторных условиях удастся только при применении соответствующей высокой температуры. Будем работать с аппаратурой, подобной той, какая была использована при обжиге пирита, только трубку для сгорания возьмем фарфоровую или железную. Закрой трубку пробками, обернутыми для теплоизоляции асбестовой тканью. В отверстие в первой пробке вставим капилляр, а во второй-простую стеклянную трубку, которую соединим : промывной склянкой, наполненной наполовину водой или раствором фуксина. Реакционную смесь приготовим следующим образом. Растолчем в ступке 10 г гипса, 5 г каолина (глина) и 1,5 г активного порошкообразного угля. Смесь высушим, нагревая некоторое время при 200 °С в фарфоровой чашке. После охлаждения (лучше всего в эксикаторе) внесем смесь в середину трубки для сжигания. При этом обратим внимание на то, чтобы она не заполнила все поперечное сечение трубки. Затем сильно нагреем трубку с помощью двух горелок (одна снизу, вторая наклонно сверху) и, когда трубка накалится, пропустим через всю систему не слишком сильный поток воздуха. Уже через 10 минут, благодаря образованию сернистой кислоты, раствор фуксина в промывной склянке обесцветится. Выключим водоструйный насос и прекратим нагревание. Получить высокую температуру мы можем также, если обмотаем как можно плотнее фарфоровую трубку нагревательной спиралью на 750-1000 Вт (см. рисунок). Концы спирали соединим с толстой медной проволокой, которую также многократно обмотаем вокруг трубки, а затем изолируем с помощью фарфоровых бусинок и подведем к штекеру. (Осторожно при работе с напряжением 220 В!) Естественно, в качестве источника нагрева может пригодиться также стеклодувная горелка или паяльная лампа. В технике работают со смесью ангидрита, кокса, глины, песка и колчеданного огарка Fe2O3. Червячный транспортер сдает смесь в 70-метровую вращающуюся трубчатую печь, где сжигают пылевидный уголь. Температура в концевой части печи, в месте горения, составляет примерно 1400 °С. При этой температуре образующаяся в ходе реакции негашеная известь сплавляется с глиной, песком и колчеданным огарком в результате получается цементный клинкер. Остывший клинкер размалывают и смешивают с несколькими процентами гипса. Получившийся в результате высококачественный портландцемент поступает в продажу. При тщательном проведении и контроле процесса из 100 т ангидрита (плюс глина, песок, kокс и колчеданный огарок) можно получить около 72 т cepной кислоты и 62 т цементного клинкера. Серную кислоту можно получать также из кизерита (сульфата магния MgSO4 -Н2О). Для опыта воспользуемся такой же установкой, как и для разложения гипса, но трубку на этот раз возьмем из тугоплавкого стекла. Реакционную смесь получим, прокалив в фарфоровой чаше 5 г сульфата магния, а в железном тигле с крышкой-0,5 г активного угля, и затем смешав их и растерев в ступке до пылеобразного состояния. Перенесем смесь в фарфоровую лодочку и поместим ее в реакционную трубку. Белая масса, которая получится в конце опыта в фарфор вой лодочке, состоит из оксида магния. В технике его перерабатывают в цемент Сореля, являющийся основой для производства ксилолита. Получение таких важных для строительной промышленности производных продуктов, как цементный клинкер и ксилолит, делает производство серной кислоты из местного сырья особенно экономичным. Переработка промежуточных и побочных продуктов в ценное сырье или конечные продукты является важным принципом химической промышленности. Получим ксилолит Смешаем равные части оксида магния и опилок с растворе хлорида магния и слой образовавшейся кашицы толщине около 1 см нанесем на подложку. Через 24-48 ч масса затвердеет, как камень. Она не горит, ее можно сверлить, пилить прибивать гвоздями. При строительстве домов ксилолит применяют как материал для полов. Древесное волокно, затвердевшее без заполнения промежутков с цементом Сореля (магнизиальным цементом), спрессованное и склеенное в плиты используется в качестве легкого, тепло- и звуконепроницаемого строительного материала (плиты Гераклита). Кремний Выделение кремневой кислоты из жидкого стекла | |
Просмотров: 1676 | Загрузок: 160 | |
Всего комментариев: 0 | |